Method Lectures of the Bridge Professorship

Lectures in the summer semester of 2016.

29.06.2016Bridge-Lecture

Caregiving as a networked process

Dr. Laura M. Koehly (National Institutes of Health, Washington)
Place:
SOCIUM Research Center on Inequality and Social Policy
Room: 5.4680
Mary-Somerville-Straße 5
28359 Bremen
Time:
6:16 p.m.
Contact Person:
Lecture Series:
Method Lectures of the Bridge Professorship
Semester:
SoSe 2016

Laura M. Koehly is Senior Investigator and Chief, Social and Behavioral Research Branch at the National Human Genome Research Institute. Her research focuses on developing and applying social network methods to the study of complex social systems, such as families and communities. In order to better understand the impact of the interpersonal environment on behaviors, Laura Koehly also develops statistical methods to examine the perspectives of all members within a family system, thereby considering the social context in which at-risk individuals live.

Abstract:
In the United States, approximately 66 million informal (unpaid) caregivers provide care to someone who is ill, disabled or are experiencing loss of function associated with aging; approximately 4.7 million perform such roles in Germany. These caregivers may be adult children, spouses, parents, or other social network members. Caregiving research has traditionally engaged a single-informant, primary caregiver approach to characterize the caregiving network composition and function. However, multiple family members are affected by caregiving and may experience it differently. In the current talk, we examine the added value of the multi-informant approach to characterize the social landscape of caregiving within the context of Alzheimer’s disease and related dementia (ADRD). Our data come from the Caregiving Roles and Expectations Networks (CaRENet) Project in which 72 informants from 30 families enumerated network members and indicated caregiving roles for each. We observe both within family and between family variability with respect to caregiving roles and expectations. These results provide evidence for moving beyond a sole primary caregiver model, suggesting the need to move towards a multi-informant approach when designing caregiving studies and interventions. In addition, network-level factors derived from such an approach may be important to family adaptation and caregiver well-being.

01.07.2016Bridge-Lecture

Communicating Friendship: Relational Enactments and Relational Perceptions

Prof. Daniel A. McFarland (Stanford University)
Place:
SOCIUM Research Center on Inequality and Social Policy
Room: 9.73280
Mary-Somerville-Straße 9
28359 Bremen
Time:
10:15 a.m.
Contact Person:
Cooperation:
Lecture Series:
Method Lectures of the Bridge Professorship
Semester:
SoSe 2016

Dan McFarland is Professor of Sociology and Organizational Behavior at Stanford University. His research focuses on the social and organizational dynamics of educational systems like schools, classrooms and universities. In particular, Dan has performed a series of studies on classroom organization and interaction; on the formation of adolescent relationships, social structures, and identities; on interdisciplinary collaboration and intellectual innovation; and on relational sociology. His interdisciplinary collaborations with linguists and computer scientists are cutting-edge studies of big data and methodological advances in social networks and language modeling.

Abstract:
This paper attempts to directly consider the nature of relationships and the role of interaction dynamics more deeply. To this end, relationships are reconceptualized as a story between persons that is perceived (labeled), agreed upon, and enacted in interaction. From this perspective, types of ties like friendship are relational frameworks that are mutually recognized and enacted via certain interactional footings. To identify the effect of interactional footings over and above previously identified network mechanisms, we rely on systematic social observations of hundreds of settings that extend across one hundred thousand turns of social interaction, as well as longitudinally collected sociometric surveys and institutional records. With these data, interactions are not only coded for a variety of qualities, but they are situated in various social contexts and institutional framing efforts. For example, a particular interactional event, like the act of agreement between i and j at time t, can be embedded in a particular setting, a task (or sequence), a role-relation, and a reported friendship relation. Since most interactions are guided by any one or more of these framing efforts machine learning is employed to identify the interactions associated with each one while taking into account their overlap. Ultimately, the goal is to identify the interactional signal of a perceived and agreed upon reports of friendship. In such a fashion, we identify the interactional footings or ³friendship script² that actors employ to signal the relational frame of ³friendship². This signal - as a latent dimension - is then tested for its predictive capacity on friendship formation to ascertain if it has an effect over and above previously held mechanisms of tie formation.